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Numerical Simulations of Screened Coulomb Systems.
A Comparison Between Hyperspherical and
Periodic Boundary Conditions
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Numerical simulations or Coulomb systems can be performed in various
geometries, for instance in a cube with periodic boundary conditions (C3) or on
the surface of a hypersphere (S3). We show how to extend these methods of
simulations to the case of screened (Yukawa) potentials. We make a detailed
comparison between the properties of Yukawa systems in these two geometries
and derive the correct configurational energies of some models such as the
Yukawa restricted primitive model and the Yukawa one component plasma.

KEY WORDS: Yukawa potential; strongly coupled plasmas; colloids;
numerical simulations.

I. INTRODUCTION

The numerical simulation of a fluid phase can be performed either in a
cubic simulation box with periodic boundary conditions or on the surface
of a four dimensional (4D) sphere, a hypersphere for short. We shall
denote C3 the cube of side L, and S3 the hypersphere of center O and
radius R (equation: x2+ y2+z2+t2=R2). In C3 we employ periodic
boundary conditions. S3 is a 3D non-Euclidean closed space of R4 of
positive curvature which is homogeneous and isotropic albeit finite. By
contrast C3 is an homogeneous but anisotropic space.

In the case of Coulomb fluids (i.e., systems of charges, dipoles, etc.) it is
widely admitted that the pair potentials which must be used in a simulation
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are those which are solution of the basics electrostatics in the considered
geometry. For instance, in C3, the potential of a charge (plus a neutralizing
background) should be the Ewald potential.(1�3) Poisson's equation can
also be solved in S3 which allows to perform simulations of Coulomb
fluids (and others) in this geometry too.(4�6)

In a recent paper(7) one of us have given a detailed comparison
between the electrostatics in C3 and S3 and derived the correct configura-
tional energies of two important cases of Coulomb systems, the restricted
primitive model (RPM) of electrolytes and the one component plasma
(OCP). In the present paper we extend this analysis to the case of screened
Coulomb systems (i.e., Yukawa systems). Recently, many models involving
Yukawa interactions have been applied for instance to study thermo-
dynamic and structural properties of dusty plasmas(8�11) and spectroscopic
properties of dense plasmas.(12, 13) These studies have been performed by
means of numerical simulations in C3. The application of the hypersphere
method to Yukawa systems was motivated by an extension of these studies
to a wider range of physical parameters in order to use them in a new
theoretical model for the equation of state of Deuterium.(14) The validity of
the hypersphere method was corroborated in a recent Monte Carlo (MC)
study of the OCP.(15)

The paper is organized as follows. In Section 2 we discuss briefly some
peculiar points concerning the electrostatics of Yukawa systems in the
ordinary space R3. We also discuss the Hamiltonians of the Yukawa RPM
(YRPM) and the Yukawa OCP (YOCP) as well as lower bounds on their
configurational energies. In Sections 3 and 4 we discuss the same points
than in Section 2 but in the cases of spaces C3 and S3 respectively.

II. YUKAWA SYSTEMS IN RR3

A. Point-Charges

The Green's function G(r, r0) of the Helmholtz equation in R3 with
boundaries at infinity

(2r&:2) G(r, r0)=&4?$(r&r0) (2.1)

the solution of which reads(16)

G(r, r0)=
exp(&: &r&r0&)

&r&r0&
(2.2)
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can be seen as the screened potential at point r of a unit point charge
located at r0 . Henceforth we shall note .R3

(r&r0)#G(r, r0). An important
property of .R 3

is that its Fourier transform is non-singular and positive:

.~ R 3
(k)=| d 3r .R 3

(r) exp(&ir } k)=
4?

k2+:2 (2.3)

Yukawa potentials may be seen as effective potentials acting between
a subset of charged species of a Coulomb system while the other species are
represented by a polarizable background of dielectric constant =(k). The
effect of the background is taken into account in the frame of the linear
response theory. The choice

=(k)=1+:2�k2 (2.4)

leads to the Yukawa form (2.2) of the screened potentials. In the case of a
plasma, the electrons constitute the uniform background and the simple
form (2.4) of the dielectric constant can be obtained within the linearized
Debye�Hu� ckel or Thomas�Fermi approximations.(17) In the former case
the approximation is valid at low densities and high temperatures and,
in the latter, it applies to a cold and dense quantum gas of electrons.
As already mentioned, Yukawa potentials can be used to simulate
plasmas, (12, 13, 18, 19) dusty plasmas(8, 11) but also colloids as well.(20, 21) The
physics of the model is partially contained in the dependance of the screening
parameter : upon the density \ and temperature T.

The electrostatics built from Yukawa charges differ by many respects to
the usual electrostatics. It has been discussed to some extent by Rosenfeld.(22)

We resume and complete now his results and give shorter proofs when
possible.

B. Distribution of Yukawa Charges

We look at solutions of

(2r&:2) .R 3

n (r)=&4?n(r) (2.5)

for simple distributions of Yukawa charges n(r) of R3. The solution of
Eq. (2.5) is:(16)

.R 3

n (r)=| d 3r$ n(r$) G(r, r$) (2.6)
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1. Uniform Background. In the case of a uniform background
n(r)#nb (\r # R3), the regular solution of Eq. (2.5) is

.R 3

b =nb.~ R3
(k=0)=

4?nb

:2 (2.7)

Note that, in the coulombic case (:=0), there is no regular solution.
Let us consider now the more complicated case where n(r)#0 in a

region D of R3. We denote by S(O, a) a sphere of center O and radius a
included in D, and we define the spherical average of .R3

n as

(.R3

n )(a)=|
S(O, a)

d0(a)
4?

.R 3

n (a) (2.8)

where a is a vector of the sphere S(O, a) and d0(a) is the solid angle about
vector a. (.R 3

n )(a) is a function of the sole radius a, the expression of
which is derived in the Appendix and reads

(.R3

n )(a)=
sinh(:a)

:a
.R3

n (O) (2.9)

In the case :=0, we recover a well known property of Coulomb potentials,
i.e., (.R 3

n )(a)=.R 3

n (O).(23)

2. Spherical Surfacic Distributions of Charges. Many
results concerning spherical distribution of Yukawa charges can be
deduced from Eq. (2.9). Another useful relation is the expression of the
Green function G(r, r$) of Helmholtz equation in spherical coordinates(16)

G(r, r$)=
1

- rr$
:
�

l=0

(2l+1) Il+1�2(:r<) K l+1�2(:r>) Pl (r } r$�rr$) (2.10)

where r<=inf (r, r$) and r>=sup(r, r$). In Eq. (2.10) Il+1�2 and Kl+1�2 are
Hyperbolic Bessel functions and the Pl 's, Legendre polynomials.(16)

Let us consider a sphere of center O, radius a with a charge q
uniformly distributed over its surface. The potential .R 3

_ of the distribution
is given by Eq. (2.6) with n(r)#n_(r)=q$( |r|&a)�4?a2. We insert the
expansion (2.10) of the Green function in Eq. (2.6) and notes that only the
term l=0 survives to the angular integration. Since I1�2(x)=- 2 sinh(x)�
- ?x and K1�2(x)=- ? exp(&x)�- 2x it yields readily to a result obtained
by Rosenfeld in another way:(22, 25)
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.R3

_ (r)=q
sinh(:a)

:a
exp(&:r)

r
for r�a

=q
sinh(:r)

:r
exp(&:a)

a
for r�a (2.11)

For r�a, .R3

_ (r) is equal to the potential of a point charge at the
center of the sphere with an effective charge

q_(:)=q
sinh :a

:a
(2.12)

The self-energy of the charge distribution is

ER 3

_ =
1
2 | d 3r n_(r) .R 3

_ (r)=
1
2

qq_(:)
exp(&:a)

a
(2.13)

Finally, let us consider two charged spheres of radii ai (i=1, 2) and respec-
tive charges q1 and q2 located at the points r1 and r2 such that they do not
overlap (i.e., |r1&r2 |�(a1+a2)). Their mutual interaction energy is given
by

8R 3

12, _(r12)=| d 3r n_, 1(r&r1) .R3

_, 2(r&r2)

=q1(._, 2(r&r2))(a1)

=q1, _(:) q2, _(:)
exp(&:r12)

r12

(2.14)

3. Spherical Volumic Distributions of Charges. Let us
consider now a sphere of center O, radius a with a charge q uniformly
distributed over its volume. The potential .R3

\ of the distribution can be
obtained by integration of .R 3

_ . One finds(22)

.R3

\ (r)=
3q

:2a3 _1&(1+:a) exp(&:a)
sinh :r

:r & for r�a

=
3q

:2a3

:a cosh(:a)&sinh(:a)
:

exp(&:r)
r

for r�a (2.15)

909Numerical Simulations of Screened Coulomb Systems



For r�a, .R 3

\ (r) is equal to the potential of a point charge at the center
of the sphere with an effective charge

q\(:)=3q
:a cosh(:a)&sinh(:a)

(:a)3 (2.16)

The self-energy of the charge distribution reads

ER 3

\ =
1
2 | d 3r n\(r) .R 3

\ (r)=
1
2

3q
:2a3 [q&(1+:a) exp(&:a) q\(:)] (2.17)

and the interaction energy of two non overlaping spheres has the following
expression

8R 3

12, \(r12)=q\, 1(:) q\, 2(:)
exp(&:r12)

r12

(2.18)

C. YPRM

The YRPM is an equimolar mixture of N+=N�2 hard spheres of
radius a bearing a charge q at their centers, and N&=N+ spheres of the
same diameter but with an opposite charge &q. The phase diagram of
the model has been explored recently.(20, 21) The electrostatic energy of the
YRPM reads

V R 3

YRPM= 1
2 :

i{ j

qi qj .R 3
(rij) (2.19)

Since configurations with overlaps of spheres do not contribute to the par-
tition function we take advantage of the results of Section IIB2 and replace
the point charges by spherical surfacic distributions _\ giving rise to the
same potentials. It follows from Eq. (2.12) that it can be achieved with the
choice

q\=4?_\ a2 sinh :a
:a

(2.20)

The Yukawa energy W of these N spheres is finite and positive as a conse-
quence of the positivity of .~ R3

(k). Indeed, in Fourier space

W=
1
2

1
(2?)3 | d 3k |n~ T (k)|2 .~ R 3

(k) (2.21)
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where n~ T (k) denotes the Fourier transform of the total density of charges

nT (r)= :
N

i=1

_ i$(a&&r&ri&) (2.22)

Therefore, from the inequality

W=V R 3

YRPM+NER 3

_ �0 (2.23)

one infers an extensive lower bound for V R3

YRPM , i.e.

V R 3

YRPM(1,..., N )�NBR 3

YRPM

(2.24)
BR3

YRPM=&ER 3

_ =&
q2

2
exp(&:a)

a
:a

sinh :a

a new result to our knowledge. Of course, in the limiting case :=0, one
recovers the Onsager's bound BR3

RPM=&q2�2a of the RPM.(24)

D. YOCP

We deal now with a system of N identical point Yukawa charges q
immersed in a uniform neutralizing background of density n=N�0, where
0 denotes the volume of the system. The configurational energy of the
model is

V R3

OCP=
q2

2
:

i{ j

.R3
(rij )&nq2 :

N

i=1
|

0
d 3r .R 3

(&r&ri&)

+
q2

2 |
02

d 3r d 3r$ .R 3
(&r&r$)&)+NAR3

(2.25)

where the additive constant AR 3
was included in Eq. (2.25) to fit with the

expressions obtained in the frame of a linear response theory treatment of
the electron gas, i.e., (8, 18)

AR3
=

q2

2
lim
r � 0 \.R 3

(r)&
1
r+=&

q2:
2

(2.26)

and thus the zero of energy of the YOCP is defined with respect to the
(infinite) self-energy of a Coulomb charge q rather than that (also infinite)
of a Yukawa charge.(22, 25) The thermodynamic and structural properties
of the YOCP depend on the sole dimensionless parameters :*=:ai and
1=;q2�a i (;=1�kT, k Boltzmann constant) where a i is the ionic radius
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defined by 4?na3
i �3=1. Rosenfeld has shown the existence of an extensive

lower bound for ;V R3

YOCP which reads (22)

;V R 3

YOCP�NBR 3

YOCP

BR 3

YOCP=
1 (1+:*) :* exp(&:*)

exp(:*)(:*&1)+exp(&:*)(:*+1)
&

3
2:*2&

1:*
2

(2.27)

As, in the limit :* � 0

BR 3

YOCPt&
91
10

&
181
175

:*2+ } } } (2.28)

one recovers the Lieb�Narnhofer bound BR 3

OCP=&91�10 of the OCP for
:*=0.(26)

III. YUKAWA SYSTEMS IN C3

A. Point-Charges

The Green's function GC3
(r, r0) of the Helmholtz equation in C3

(2r&:2) GC3
(r, r0)=&4?$C3

(r&r0) (\r, r0 # C3) (3.1)

can be obtained by expanding both GC3
and the Dirac mass $C3

on the
eigenfunctions exp(ik } r) (k=2?n�L, n # Z3) of the Laplacian, with the
result(8, 18, 19)

GC3
(r, r0)=

1
L3 :

k

4?
k2+:2 exp(ik } (r&r0)) (3.2)

GC3
(r, r0) can be seen as the screened potential at point r of a unit point

charge located at r0 # C3. Henceforth we shall note .C3
(r&r0)#GC3

(r, r0).
Contrary to the Laplace�Poisson equation the solutions of the Helmholtz
Eq. (3.1) are not defined up to an additive constant (the regular solution
of the homogeneous Helmholtz equation is unique). Note the property

|
C3

d 3r .C3
(r)=

4?
:2 (3.3)

It follows from Eq. (3.2) that the Fourier component .~ k of .C3
defined as

.~ k=|
C3

d 3r exp(&ik } r) .C3
(r) (3.4)
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coincides with the Fourier transform .~ R3
(k) of the Yukawa potential (cf.

Eq. (2.3)) in R3. It follows from this remark that

.~ k=|
R 3

d 3r
exp(&:r)

r
exp(&ik } r)

= :
n # Z3

|
C3(n)

d 3r
exp(&:r)

r
exp(&ik } r)

=|
C3

:
n # Z3

exp(&: &r+Ln&)
&r+Ln&)

exp(&ik } r) (3.5)

where we have divided R3 into cubic cells C3(n) of center Ln (n # Z3) and
side L and performed a trivial change of variables. Equation (3.5) gives us
an alternative expression of .C3

as the sum of the Yukawa potentials
created by an infinite cubic array of unit point Yukawa charges, i.e.,

.C3
(r)= :

n # Z3

.R3
(r+Ln) (3.6)

For r�L�2 we can easily compute the spherical average of .C3
(r) from

Eq. (3.6):

(.C3
(r))(r)=� :

n # Z3

.R 3
(r+Ln)� (r)

=.R 3
(r)+ :

n{0

(.R3
(r+Ln))(r) (3.7)

The spherical averages in the r.h.s. of Eq. (3.7) can be evaluated with the
help of Eq. (2.9) since, for n{0 and r�L�2, the source points are outside
the sphere S(O, r), which yields

(.C3
(r))(r)=

exp(&:r)
r

+
!
L

sinh(:r)
:r

(3.8)

where

!
L

= :
n{0

exp(&:L &n&)
L &n&

(3.9)

is equal to the energy of a unit point charge in the center of C3 within the
potential created by its periodical images.

A third expression for .C3
(r) can be obtained by noting that the equa-

tion satisfied by .C3
(r) can also be seen as an ordinary Helmholtz equation
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in a cube of R3 with Neumann boundary conditions. Indeed, as a conse-
quence of the periodicity, the normal derivative �n.C3

vanishes on the
surface of the cube. .C3

(r) can thus be written as the sum of a particular
solution of Eq. (3.1) (with r0=0) and the solution of the associated homo-
geneous Helmholtz equation, i.e.,

.C3
(r)=

exp(&:r)
r

+$.C3
(r) (\r # C3) (3.10)

where $.C3
(r) is solution of

[2r&:2] $.C3
(r)=0 (\r # C3) (3.11)

Equation (3.11) must be supplemented by specifying the (homogeneous)
boundary conditions (�n $.C3

=&�n[exp(&:r)�r] on the surface of the
cube). Equation (3.10) furnishes another starting point to obtain the
spherical average of .C3

. Since $.C3
(r) satisfies the homogeneous

Helmholtz equation (3.11), Eq. (2.9) can be employed which yields readily

(.C3
(r))(r)=

exp(&:r)
r

+$.C3
(0)

sinh(:r)
:r

(3.12)

Of course Eqs. (3.8) and (3.12) coincide, which implies that $.C3
(0)#!�L.

Finally it follows trivially from Eqs. (3.10) and (3.12) that

$.C3
(0)=!�L= lim

r � 0 \.C3
(r)&

exp(&:r)
r + (3.13)

B. Distribution of Yukawa Charges

We look at periodical solutions of

(2r&:2) .R 3

n (r)=&4?n(r) (r # C3) (3.14)

for simple distributions of Yukawa charges nC3
(r) in space C3.

1. Uniform Background. The potential .C3

b of a uniform back-
ground nC3

(r)#nb (\r # C3) is well defined��contrary to the pure Coulombic
case��and still obviously given by .C3

b =4?nb�:2. Let us define a pseudo-
charge q of C3 as the association of a point charge q and a neutralizing
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uniform background of total charge &q.(4, 7) The potential .� C3
of a unit

pseudo-charge reads

.� C3
(r)=.C3

(r)+.C3

b =
4?
L3 :

k{0

1
k2+:2 exp(ir } k) (3.15)

since the term k=0 of the expansion (3.2) of .C3
(r) has been killed by the

background contribution. This potential .� C3
will enter the definition of the

hamiltonian of the YOCP (see below). In the limit : � 0, .� C3
tends to the

well known Ewald potential �Ew(r)��i.e., the potential of a true charge plus
its neutralizing background in C3 (1, 2, 7)��although each of the terms .C3

and .C3

b diverge in this limit. It follows from the results of the previous
section that the spherical average of .� C3

can be written, for r�L�2, as

(.� C3)(r)=(.C3)(r)&
4?

:2L3

=
exp(&:r)

r
+

4?
:2L3 _sinh(:r)

:r
&1&+

sinh(:r)
:r

!�
L

(3.16)

where

!�
L

= lim
r � 0

[.� C3
(r)&exp(&:r)�r]=

1
L

:
n{0

exp(&:L &n&)
&n&

&
4?

:2L3

=
!
L

&
4?

:2L3 (3.17)

The constant !� �L can thus be interpreted as twice the Madelung energy of
a simple cubic lattice of unit Yukawa charges immerged in a neutralizing
background. In the limit : � 0, .� C3

� �Ew and therefore !� tends to twice
the Madelung constant of a simple cubic Wigner lattice of unit charges and
unit spacing L=1, i.e., !Ew=limr � 0[�Ew(r)&1�r]=&2, 837297479... .(1, 2)

Note that, in the limit : � 0, the constant ! diverges as t4?�(:L)2 as a
consequence of Eq. (3.17).

As pointed out by one of us, the sphericalised potential (.� C3)(r) of
Eq. (3.16) can be used instead of the exact .� C3

(r) in MC simulations of the
YOCP in cubic geometries with good practical results.(12, 13, 19)

2. Spherical Surfacic Distributions of Charges. Let us
consider a sphere S(O, a) of radius a�L�2 located at the center of the
cube with a total (screened) charge q uniformly distributed over its surface.
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We denote by _=q�(4?a2) the surfacic distribution of charge. The potential
.C3

_ of this distribution of charges is given by

.C3

_ (r)=q |
S(O, a)

d0(a)
4?

.C3
(r&a) (3.18)

Inserting the expression (3.10) of .C3
in the above equation yields

.C3

_ (r)=.R3

_ (r)+q |
S(O, a)

d0(a)
4?

$.(r&a)

=.R3

_ (r)+q
sinh(:a)

:a
$.(r) (3.19)

where, once again, we have employed Eq. (2.9). It follows from Eqs. (2.11)
and (3.10) that Eq. (3.19) can be rewritten as

.C3
(r)=q_(:) .C3

(r) for r�a

=q_(:) $.C3
(r)+q

sinh(:r)
:r

exp(&:a)
:a

for r�a (3.20)

where the renormalized charge q_(:) has been defined at Eq. (2.12). The
above result (3.20) is in fact trivial and reflects merely the fact that .C3

_ (r)
can be seen as the potential of an infinite cubic array of charged Yukawa
spheres. Mathematically, it is a consequence of the absolute convergence
(for r{0) of the series (3.6) which gives the potential .C3

(r). A direct
calculation of the self-energy yields

EC3

_ =
1
2 |

C3
d 3r n_(r) .C3

_ (r)

=
qq_(:)

2 |
S(O, a)

d0(a)
4? _exp(&:a)

:a
+$.C3

(a)&
=ER 3

_ +
q_(:)2

2
$.C3

(0) (3.21)

Since, from the discussion of Section IIIA, q_(:)2 $.C3
(0) is equal to the

interaction energy of the sphere with its periodical images the result (3.21)
is once again trivial.

Similarly the interaction energy of two non-overlaying spheres of C3 is
given of course by

8C3

12, _=q1, _(:) q2, _(:) .C3
(r12) for r12�2a (3.22)
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3. Spherical Volumic Distributions of Charges. We just
quote the results in the case of spheres of radius a with a uniform charge
density \=3q�(4?a3). With obvious notations one finds

.C3
(r)=q\(:) .C3

(r) for r�a (3.23a)

EC3

\ =ER 3

\ +
q\(:)2

2
$.C3

(0) (3.23b)

8C3

12, \=q1, \(:) q2, \(:) .C3
(r12) for r12�a1+a2 (3.23c)

where the renormalized charge q\(:) has been defined at Eq. (2.16). It is
not difficult to show that, in the case of charges of the same sign

(\r # C3) 8C3

12, \(r)�qC3

1, \(:) qC3

2, \(:) .C3
(r) (3.24)

the equality being satisfied only for r�a1+a2 .

C. YRPM

The electrostatic configurational energy of the YRPM in C3 is given
by(20, 21)

V C3

YRPM(1, 2..., N )=
1
2

:
i{ j

qi qj .C3
(rij )+

N
2

q2 $.C3
(0) (3.25)

V C3

YRPM includes the pair interactions as well as the N individual energies
q2 $.C3

(0)�2 of each charge with its periodical images. In Section IIC we
have derived an extensive lower bound for the energy of the YRPM in R3.
Since the YRPM in C3 can be seen as an infinite system made of periodic
images of the basic cubic cell C3, it may seem obvious a priori that the
bound (2.24) is still valid in C3. However, in this picture, the configura-
tional energy V C3

YRPM represents the energy of a subsystem of the
infinite��periodic��system and this hasty conclusion could be dubious.
A direct check is worthwhile. As in Section IIC we spread the charges
uniformly on the surfaces of the spheres leaving unchanged the pair poten-
tials (c.f. Section IIIB2). The energy WC3

of the total charge distribution is
positive and can be written

WC3
= 1

2 :
i{ j

q iqj.C3
(rij )+NEC3

_ �0 (3.26)
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Combining Eqs. (3.25) and (3.26) and making use of identity (3.21) one
finds that for non overlaping configurations of spheres

V C3

YRPM(1, 2..., N )�
N
2

q2 $.C3
(0)&NEC3

_

�&NER3

_ =NBR3

YRPM (3.27)

where we have used Eq. (3.21). The bound (2.24) for the YRPM in R3 still
holds in C3.

D. YOCP

The configurational energy of the YOCP in C3 has been given by
Hubbard and Slattery.(18) It reads

V C3

YOCP=V C3

OCP+
q2

2
4?
L3 :

N

i, j

:
k{0

exp[ik } (ri&rj )](=(k)&1&1)�k2 (3.28)

where V C3

OCP is the configurational energy of the OCP and =(k) a dielectric
constant which takes into account the background charge fluctuations.
V S3

OCP has the following expression(1)

V C3

OCP=NAC3

OCP+
q2

2
:
N

i{ j

�Ew(rij )

(3.29)

AC3

OCP=
q2

2L
!Ew

where �Ew#.� C3
(:=0) is the Ewald potential and !Ew the Madelung

constant of the OCP (c.f. Section IIIB1).
If the dielectric constant =(k) is given by Eq. (2.4) we recover Yukawa

interactions. With the notations of Sections IIIA and IIIB1) V C3

YOCP can be
rewritten either as

V C3

YOCP=NAC3

YOCP+
q2

2
:
N

i{ j

.� C3
(rij )

(3.30)
AC3

YOCP=AC3

OCP+$AC3

YOCP
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or

V C3

YOCP=NA� C3

YOCP&
N
2

n
4?q2

:2 +
q2

2
:
N

i{ j

.C3
(rij )

(3.31)

A� C3

YOCP=AC3

YOCP+
1
2

4?q2

:2L3

where n=N�L3 denotes the number density of ions. The additional con-
stant $AC3

YOCP in Eq. (3.30) originates from the terms i= j in the r.h.s. of
Eq. (3.28), i.e.,

$AC3

YOCP=
q2

2
4?
L3 :

k{0 _
1

=(k)
&1&<k2

=
q2

2L
lim
r � 0

[.� C3
(r)&�Ew(r)]=

q2

2L
[&!Ew+!� ]&

q2:
2

(3.32)

where the Madelung constants !� and !Ew have been defined in Section IIIB1.
Note that in the limit : � 0, !� � !Ew and thus $AC3

YOCP � 0, as it should.
Moreover in the limits : � �, L fixed or alternatively L � �, : fixed one
has ;$AL3

YOCPt&:*1�2. It follows from Eqs. (3.30), (3.32), and (3.17) that

A� C3

YOCP=
q2

2
($.C3

(0)&:) (3.33)

We want to show now that the lower bound on V R 3

YOCP derived by
Rosenfeld(22) remains valid for V C3

YOCP . In order to do so, we replace each
point charge q by a sphere of radius a with a charge q0

\ uniformly dis-
tributed over its volume. The value of q0 is chosen such that the effective
charge q0

\ associated with it is equal to q (c.f. Eq. (2.16)). q being fixed,
q0 is therefore a function of a. Moreover we associate to these spheres a
uniform background of charge density &Nq0�L3. The, electrostatic energy
of these N spheres in their background is well defined (i.e., non-diverging),
positive and can be written

W=NEC3

\ +
1
2

:
i{ j

8C3

ij, \&
N
2

n
4?q2

0

:2 �0 (3.34)

where the expressions of the self-energy EC3

\ and the pair-interactions 8C3

ij, \

have been given in Section IIIB3. Adding and subtracting W in the r.h.s of
Eq. (3.31) yields
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V C3

YOCP=
1
2

Nq2($.C3
(0)&:)&

N
2

n
4?[q2&q2

0]
:2

+
1
2

:
N

i{ j

(q2.C3
((rij )&8C3

ij, \)+W&NEC3

\

�
1
2

Nq2($.C3
(0)&:)&N \EC3

\ +
1
2

n
4?
:2 [q2&q2

0]+ (3.35)

where we have made use of the inequalities (3.24) and (3.34). Since the self-
energy EC3

\ is simply related to that in R3 (c.f. Eq. (3.23b) we obtain finally

;V C3

YOCP�NBC3

YOCP(a)
(3.36)

;&1BC3

YOCP(a)=&
q2:
2

&ER 3

\ (a)&
1
2

n
4?
:2 [q2&q2

0(a)]

The result for BC3

YOCP(a) is identical to that obtained by Rosenfeld in R3.(22)

The best bound is obtained by maximizing BC3

YOCP(a)#BR 3

YOCP(a) with
respect to the diameter a. One finds that a must be chosen equal to the
ionic radius. Therefore

;V C3

YOCP�NBR3

YOCP (3.37)

where BR3

YOCP is given by Eq. (2.27). Note that the result (3.37), as in the
case of the YRPM, although physically reasonable, is not trivial.

IV. YUKAWA SYSTEMS IN S3

A. Point-Charges

The Green's function GS3
(M, M0) of the Helmholtz equation in S3

reads

(2S3

M &:2) GS3
(M, M0)=&4?$S3

(M, M0) (\M, M0 # S3) (4.1)

To solve (4.1) we expand both the Green function GS3
(M, M0) and the

Dirac distribution $S3
(M, M0) upon the complete, orthogonal basis set of

4D spherical harmonics YL, m .(4, 5, 27�29)

$S3
(M, M0)=

1
R3 :

�

L=0

:
m

Y*L, m(M0) YL, m(M ) (4.2)

GS3
(M, M0)= :

�

L=0

:
m

GL, m(M0) YL, m(M ) (4.3)
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The 4D spherical harmonics YL, m identify with the Wigner functions
DL�2

m1 , m2
with L integer. m=(m1 , m2) and m i (i=1, 2) takes the L+1 values

mi=&L�2, &L�2+1,..., L�2. These functions play in S3 the role devoted
to the plane waves in C3. In particular the YL, m are eigenfunctions of
the Laplace�Beltrami operator 2S3

with eigenvalues &L(L+2)�R2.(27�29)

It follows from this remark that

GL, m(M0)=
4?
R

1
L(L+2)+:2R2 Y*L, m(M0) (4.4)

which solves Eq. (4.1). Moreover the spherical harmonics satisfy an addition
theorem(4, 5, 27�29)

:
m

Y*L, m(M0) YL, m(M )=
L+1
2?2

sin(L+1) �M, M0

sin �M, M0

(4.5)

�M, M0
=arccos \OM } OM0

R2 + (4.6)

from which it follows that

GS3
(M, M0)=

2
?R sin �M, M0

:
�

L=0

L+1
L(L+2)+:2R2 sin(L+1) �M, M0

(4.7)

As a consequence of the isotropy of S3 the Green function GS3
(M, M0)

depends on the sole geodesic distance xM, M0
=R�M, M0

between the points
M and M0 .

The series (4.7) can be summed with the result

GS3
(M, M0)=

1
R

sinh |(?&�M, M0
)

sin �M, M0
sinh |?

for :R�1 (4.8)

=
1
R

sin |(?&�M, M0
)

sin �M, M0
sin |?

for :R�1 (4.9)

with |=- |:2R2&1|. It turns out that the analytical expression of
GS3

(M, M0) changes at :R=1, an often met curiosity of the Helmholtz
equation.(16) GS3

(M, M0) is singular for M=M0 . More precisely we note
that, at a given xM, M0

=R�M, M0
and in the limit R � �, or equivalently

at a given R and in the limit �M, M0
� 0 the Green function GS3

(M, M0)
tends to the Euclidean Green function in R3, i.e., GS3

(M, M0)t

exp(&:xM, M0
)�xM, M0

.
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As in the previous sections GS3
(M, M0) identify with the potential at

point M of a unit Yukawa point charge located at point M0 . Henceforth
we shall note .S3

(�M, M0
)#GS3

(M, M0). Note that the Property (3.3) still
holds in S3; indeed it follows from Eq. (4.7) that

|
S3

d{(M ) .S3
(M )=

4?
:2 (4.10)

where d{(M ) is the infinitesimal volume element of S3.

B. Distribution of Yukawa Charges

We look at solutions of

(2S3

M &:2) .S3

n (M )=&4?n(M ) (\M # S3) (4.11)

for simple distributions of Yukawa charges n(M ) on the hypersphere.

1. Uniform Background. Let us first consider a uniform back-
ground n(M )#nb (\M # S3). We look at a general solution of Eq. (4.11)
with an axial symmetry. i.e., a solution of the type .S3

nB
(w) where w denotes

the colatitude of point M: w=arccos(OM } x4�R), where x4 is the fourth
vector of an orthonormal basis (x1 , x2 , x3 , x4) of R4. Note that Rw is the
geodesic distance between the north pole N of S3 and the point M.

In spherical coordinates Eq. (4.11) reads(5, 27�29)

_ 1
R2 sin2 w

�
�w

sin2 w
�

�w
&:2& .S3

nB
(w)=&4?nb (4.12)

the general solution of which is easily obtained and reads

.S3

nB
(w)=A

sinh |w
sin w

+B
sinh |(?&w)

sin w
+

4?nb

:2 if :R�1

=A
sin |w
sin w

+B
sin |(?&w)

sin w
+

4?nb

:2 if :R�1 (4.13)

A, B are arbitrary constants and | was defined in Section IVA. The solu-
tion .S3

nB
(w) is singular at w=0 if B{0 and at w=? if A{0. These

singularities are a consequence of the singularities at w=0, ? of the
Laplacian operator in spherical coordinates; they correspond to two Dirac
masses at the north and south pole of the sphere. For nb=0 the singular
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solution A=0, B{0 of Eq. (4.13) is solution of the homogeneous
Helmholtz equation with a singularity at w=0. Therefore it should coin-
cide with the potential of a point charge located at the North pole of the
hypersphere. Choosing B in such a way that Eq. (4.10) is satisfied gives
indeed again Eq. (4.9). Finally we note that, for nB{0, the regular solution
(A=B=0) of Eq. (4.13) is the same constant than in R3 and C3.

As in S3 we define a pseudo Yukawa charge q as the association of
a bare charge q and a uniform neutralizing background of density
nb=&q�4 where 4=2?2R3 is the volume of S3. The potential .� C3

(w) of
unit point pseudo-charge located at the north-pole reads

.� S3
(w)=.S3

(w)&
4?

:24
=

2
?R sin w

:
�

L=1

L+1
L(L+2)+:2R2 sin(L+1) w

(4.14)

As in the case of C3, the contribution of the background kills the term
L=0 in the expansion of .C3

(w) upon the eigenfunctions of the Laplace
operator. It follows from Eq. (4.10) that the integral of .� S3

over S3

vanishes. In the limit : � 0 the potential .� S3
(w) is regular for w{0 and

one checks that

\w # ]0, ?] lim
: � 0

.� S3
(w)#�S3

(w)=
1

?R _(?&w) cot(w)&
1
2& (4.15)

an expression which coincides with the potential �S3
(w) of a coulombic

pseudo-charge in S3.(4, 5, 7)

2. Spherical Surfacic Distributions of Charges. Let us con-
sider a sphere S(N, a) of radius a=Rw0 located at the north pole N of the
hypersphere. It is defined as the set of points M at a geodesic distance
Rw�a from N. It is not a flat object but rather a curved one which can
be seen as a contact lense on a 4D eye-ball. The sphere is charged with a
charge q uniformly spread over its surface s(w0)=4?R2 sin2 w0 .(4, 5, 7) The
associated density of charge is n_(M )=_$(Rw&Rw0), _=q�s(w0) and the
potential .S3

_ (M ) reads

.S3

_ (M )=|
S3

d{(M$) n_(M$) GS3
(M$, M ) (4.16)

It follow from Eq. (4.10) that

|
S3

d{ .S3

_ (M )=
4?q
:2 (4.17)
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A direct calculation by means of Eq. (4.16) seems difficult and we take
advantage of the symmetry property .S3

_ (M )#.S3

_ (w) to compute .S3

_ (w)
by making use of the results of Section IVB1. In both regions 0�w�w0

and w0�w�? .S3

_ (w) is a regular solution of the homogeneous Helmholtz
equation and we can therefore use Eqs. (4.13) with nb#0. The constants A
and B which enters Eq. (4.13) must be chosen in such a way that .S3

_ (w)
is regular for w=0 and w=?. In the case :R�1 we can thus write

0�w�w0 .S3

_ (w)=A1

sinh |w
sin w

(4.18)

w0�w�? .S3

_ (w)=A2

sinh |(?&w)
sin w

where the constant A1 and A2 remain to be specified. In the case :R�1 we
have similar expressions but with, the sinh replaced by sin. The constants
A1 and A2 are determined unambiguously by Eq. (4.17) and by the condi-
tion of continuity of the potential at w=w0 i.e., in the case :R�1, by the
relations

4?R3 |
?

0
dw sin2 w.S3

_ (w)=
4?q
:2 (4.19a)

A1

sinh |w0

sin w0

=A2

sinh |(?&w0)
sin w0

(4.19b)

In the case :R�1, relations analogous to Eqs. (4.19) hold but with all
the ``sinh'' replaced by ``sin.'' Solving Eqs. (4.19) for A1 and A2 yields, for
:R�1, to the desired result

0�w�w0 .S3

_ (w)=
q
R

sinh |(?&w0)
| sin w0 sinh |?

sinh |w
sin w

(4.20)

w0�w�? .S3

_ (w)=
q
R

sinh |w0

| sin w0 sinh |?
sinh |(?&w)

sin w

For :R�1 all the sinh entering the above equations must be replaced by
sin functions.

As in the case of R3 and C3 it is convenient to define renormalized
charges qS3

_ (:) according to the relations

qS3

_ (:)=q
sin |w0

| sin w0

:R�1=q
sinh |w0

| sin w0

:R�1 (4.21)
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A direct comparison of Eqs. (4.20) and (4.9) shows that

\w # [0, ?] .S3

_ (w)�qS3

_ (:) .S3
(w) (4.22)

the equality being satisfied only for w�w0 . It is easy to check that, in the
Euclidean limit R � �, we have qS3

_ (:) � q_(:).
The self-energy of the sphere is given by

ES3

_ = 1
2 |

S3
d{ n_(M ) .S3

_ (M )= 1
2qqS3

_ (:) .S3

_ (w0) (4.23)

and tends to the Euclidean value ER 3

_ for R � �. Similarly, one finds that
the interaction energy of two non-overlaping charged spheres of center M1

and M2 and respective charges (q1 , q2) and radii (a1 , a2) is given by

8S3

12, _=qS3

1, _(:) qS3

2, _(:) .S3
(�M1 , M2

) (R�M1M2
�a1+a2) (4.24)

Moreover, in the case of spheres bearing charges of the same sign, it
follows from (4.22) that

\w # [0, ?] 8S3

12, _(w)�qS3

1, _(:) qS3

2, _(:) .S3
(w) (4.25)

3. Spherical Volumic Distributions of Charges. We consider
a sphere S(N, a#Rw0) with its center at the north pole of S3. Its total
charge q is supposed to be distributed over its volume

v(Rw0)=2?R3(w0&sin w0 cos w0) (4.26)

with a uniform density \=q�v(Rw0). The potential .S3

\ (w) of this distribu-
tion is determined either by integration of .S3

_ (w) or, directly, following
arguments similar to those of Section IVB2. For :R�1 one finds

0�w�w0.S3

\ (w)=A1

sinh |w
sin w

+
4?\
:2

w0�w�?.S3

\ (w)=A2

sinh |(?&w)
sin w

(4.27)

A1=
sinh |(?&w0)

sinh |w0

A2&
4?\
:2

sin w0

sinh |w0

A2=
4?\
:2

1
| sinh |?

[| cosh |w0 sin w0&sinh |w0 cos w0]
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In the case :R�1 all the hyperbolic functions in Eqs. (4.27) must be
replaced by their trigonometric counterparts. Note that, of course, the
condition (4.17) holds for .S3

\ (w). We define a renormalized charge qS3

\ (:)
according to the relations

qS3

\ (:)=
4?qR

:2|v(Rw0)
[| cosh |w0 sin w0&sinh |w0 cos w0] (:R�1)

=
4?qR

:2|v(Rw0)
[| cos |w0 sin w0&sin |w0 cos w0] (:R�1)

(4.28)

which allows to rewrite Eq. (4.27) in a more compact way

\w # [0, ?] .S3

\ (w)�qS3

\ (:) .S3
(w) (4.29)

the equality being satisfied only for w�w0 . It is easy to check that, in the
Euclidean limit R � �, we have qS3

\ (:) � q\(:).
The self-energy of the sphere is given by

ES3

\ =
1
2

4?q2

:2v(Rw0)
+

1
2

| sinh |(?&w0)
R sinh |? sinh |w0

[qS3

\ (:)]2

&
1
2

4?
:2

qqS3

\ (:)

:2v(Rw0)
| sin w0

sinh |w0

(:R�1)

=
1
2

4?q2

:2v(Rw0)
+

1
2

| sin |(?&w0)
R sin |? sin |w0

[qS3

\ (:)]2

&
1
2

4?
:2

qqS3

\ (:)

:2v(Rw0)
| sin w0

sin |w0

(:R�1) (4.30)

and tends to the Euclidean value ER 3

\ for R � �. Similarly, one finds that
the interaction energy of two non-overlaping charged spheres of center M1

and M2 and respective charges (q1 , q2) and radii (a1 , a2) is given by

8S3

12, \=qS3

1, \(:) qS3

2, \(:) .S3
(�M1M2

) (R�M1M2
�a1+a2) (4.31)

Moreover, in the case of spheres hearing charges of the same sign, it
follows from (4.29) that

\w # [0, ?] 8S3

12, \(w)�qS3

1, \(:) qS3

2, \(:) .S3
(w) (4.32)
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C. YRPM

We define the electrostatic energy of the YRPM in S3 as

V S3

YRPM(1, 2..., N )= 1
2 :

i{ j

q iqj .S3
(�ij )+NAS3

YRPM (4.33)

where AS3

YRPM is a constant which fixes the zero of energy of the system. An
interesting problem concerning finite spaces such that S3 is how to define
this zero of energy. In R3 the usual statement is that the energy of a system
of N interacting particles vanishes when the particles are rejected to
infinity. Obviously this prescription does not hold in a finite space such
as S3. In space C3 the same problem holds but can be solved for systems
involving long range interactions��such that the YRPM for instance��since
the system may be seen as an infinite periodic system of R3. We shall
adopt for the YRPM in S3 the same heuristic prescription as the one we
adopted recently for the RPM.(7) We choose AS3

YRPM in such a way that
V S3

YRPM(1, 2..., N ) as the same lower extensive bound BR3

YRPM than its
Euclidean counterpart V R3

YRPM(1, 2..., N ).
In order to find a lower bound for V S3

YRPM(1, 2..., N )&NAS3

YRPM we
proceeds as in Sections IIC and IIIC. For configurations where the spheres
do not overlap we can replace the point charges \q at the centers of the
spheres by superficial distributions of charges of density _\ . If _\ is
chosen such that the associated renormalized charges \qS3

_ (:) coincide
with the point charges \q, the procedure leaves the pair potentials
unchanged. Following the same arguments as those of Sections IIC and
IIIC one can then show that

V S3

YRPM(1, 2..., N )&NAS3

YRPM�NBS3

YRPM=&NES3

_ (4.34)

where ES3

_ has been given at Eq. (4.23). According to the preliminary dis-
cussion of this section are thus led to define

AS3

YRPM=BR3

YRPM&BS3

YRPM (4.35)

In the case :{0 AS3

YRPM decays exponentially with system size. Its inclusion
in a MC simulation should however leads to better results (i.e., a minimiza-
tion of finite size effects and a faster convergence towards the thermodynamic
limit).

D. YOCP

In order to emphasize once again the formal unity of electrostatics in
the two spaces C3 and S3, we define the configurational energy V S3

YOCP of

927Numerical Simulations of Screened Coulomb Systems



the YOCP in S3 by an expression similar to that given in Section IIID for
V C3

YOCP (cf. Eq. (3.28))

V S3

YOCP=V S3

OCP+
q2

2
4?
R

:
N

i, j

:
�

L=1

:
m _ 1

=(L)
&1& 1

L(L+2)
Y*L, m(Mi ) YL, m(M j )

(4.36)

where V S3

OCP is the configurational energy of the OCP(7)

V S3

OCP=NAS3

OCP+
q2

2
:
N

i{ j

�S3

ij (4.37)

where �S3

ij has been given in Eq. (4.25). In Eq. (4.37) AS3

OCP is a constant
which fixes the zero of energy and which can be ascribed a value only by
some heuristic prescription. An adequate ansazt (as confirmed recently by
extensive MC simulations of the OCP in S3) (15) is to choose AS3

OCP in such
a way that the Lieb�Narnhofer(26) lower bounds on ;V S3

OCP and ;V R3

OCP are
identical (and equal to &9N1�10). With this prescription one has(7)

;AS3

OCP=&
9

10
1&

31
4?R*

+
1

2R*d(R*&1) _
3
2

+sin2(R*&1)&
R*&1 sin2(R*&1)

d(R*&1) &
=&

31
4?R*

&
12

175
1

R*2+
2

875
1

R*4+O(1�R*6) (4.38)

where d(x)=x&sin(x) cos(x). In Eq. (4.38) R*=R�aS3
is the reduced

radius of the hypersphere and 1=;q2�aS3
the dimensionless coupling

parameter of the OCP. In S3 the ionic radius aS3
is defined by the relation

nv(aS3
)=1, where v(aS3

) is the volume (4.26) of a sphere of S3 of radius aS3
.

Note that aS3
and the euclidean ionic radius a=(3�4?n)1�3, n=N�4, differ

by terms bf order R*&2.
We have already pointed out the correspondences YL, m(M ) W

exp(ik } r) and L(L+2)�R2 W k2 which allows to ``map'' S3 onto C3. If we
apply this mapping to the dielectric constant (2.4) and define

=(L)=1+
:2R2

L(L+2)
(4.39)
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then Eq. (4.36) can be rewritten as

V S3

YOCP=NAS3

YOCP+
q2

2
:
N

i{ j

.� S3

ij

(4.40)
AS3

YOCP=AS3

OCP+$AS3

YOCP

The additional constant $AS3

YOCP originates from the terms i= j in the r.h.s.
of Eq. (4.36)

$AS3

YOCP=
q2

2
4?
R

:
�

L=1

:
m _ 1

=(L)
&1& 1

L(L+2)
Y*L, m(Mi ) YL, m(Mi )

=
q2

2
lim
w � 0

[.� S3
(w)&�(w)] (4.41)

One can compute explicitly the limit in (4.41), which gives

;$AS3

YOCP=
1
2 _

3
2?R*

&
| coth |?

R*
&

4?
:*24*& (:R�1)

=
1
2 _

3
2?R*

&
| cot |?

R*
&

4?
:*24*& (:R�1) (4.42)

where we have introduced the reduced volume 4*=4�(aS3
)3 and the

reduced screening parameter :*=:aS3
. Note that in the limit : � 0,

$AS3

YOCP � 0, as it should. Moreover in the limits : � �, R fixed or alter-
natively R � �, : fixed one has ;$AS3

YOCPt&:*1�2.
The expression (4.40) of V S3

YOCP corresponds to the expression (3.30)
of V C3

YOCP . An expression analogous to (3.31) involving the potentials of
bare Yukawa charges is easily derived from (4.40) and reads

V S3

YOCP=NA� S3

YOCP&
N
2

4?n
:2 +

q2

2
:
N

i{ j

.S3

ij

(4.43)

A� S3

YOCP=AS3

YOCP+
q2

2
4?

:24

With arguments similar to those of Section IIID one can derive an
extensive lower bound for V S3

YOCP . By analogy with Eq. (3.35) one thus has

V S3

YOCP�NBS3

YOCP(a)
(4.44)

BS3

YOCP(a)=A� S3

YOCP&ES3

\ (a)&
1
2

4?n
:2 [q2&q2

0(a)]
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where q0 is the charge of a sphere of radius a such that the associated
renormalized charge qS3

0, \(:)=q (cf. Eq. (4.28), ES3

\ (a) being the associated
self-energy (4.30). The ``best'' bound is obtained by searching the maximum
of BS3

YOCP(a) as a function of a. After tremendously tedious calculations one
finds that the best bound is obtained for a equal to the ionic radius aS3

in
both cases :R�1 and :R�1. Therefore BS3

YOCP#BS3

YOCP(aS3
). This

expression does not coincide with BR 3

YOCP but the differences are exponen-
tially small with system size R*. As for the YRPM one could redefine the
additive constant A� S3

YOCP in such a way that the two bounds BS3

YOCP and
BR 3

YOCP coincide. It turns out that the numerical differences between these
two distinct expressions of the zero of energy are extremely small for the
cases usually considered in MC simulations (i.e., N�100).

5. CONCLUSION

In this article we have derived all the formal expressions which are
needed for numerical simulations of Yukawa systems either in cubico-peri-
odic or hyperspherical boundary conditions. By passing, a new lower
bound for the YRPM has also been obtained. In the companion paper, we
report extensive Monte Carlo simulations of the thermodynamic and struc-
tural properties of the YOCP performed on a hypersphere. We shall show
that the hypersphere method allows an efficient determination of the inter-
nal energy as well as the pressure. Part of these numerical results have been
used in a recent theoretical study of the equation of state of the
Deuterium.(14)

APPENDIX A. SPHERICAL AVERAGE OF YUKAWA
POTENTIAL

We consider a potential 8(M ) which is a solution of the homogeneous
Helmholtz equation in a region D of R3, i.e.,

(2&:2) 8(M )=0 (\M # D) (A.1)

The charges which create 8(M ) lie somewhere outside D. Let S(O, a) a
sphere of center O��which, henceforth, will be the origin of the coordinates��
and radius a which is totally included in D. In order to obtain an expression
for the spherical average (8)(a) defined at Eq. (2.8) we apply one of Green's
identities(23) to the potentials 8 and 9#exp(&:r)�r i.e.,

|
B(O, a)

(829&928) d{=|
S(O, a)

(8%9&9%8) } dS (A.2)
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where B(O, a) denotes the interior of the sphere S(O, a) and dS is the
(vectorial) outwards surface element. Since 9(r) is the Green function of
Helmholtz Eq. (2.1) the l.h.s of Eq. (A.2) can be written as

|
B(O, a)

(8[:29&4?$(r)]&9:28) d{=&4?8(O) (A.3)

The r.h.s. of Eq. (2.1) is easily related to the spherical average (8)(a).
Indeed, since %�=&(1+:a) exp(&:a) a�a, we have

|
S(O, a)

8%9 } dS=&(1+:a) exp(&:a) |
S(O, a)

d0(a) 8(a)

=&4?(1+:a) exp(&:a)(8)(a) (A.4)

Moreover

|
S(O, a)

9%8 } dS=
exp(&:a)

a |
B(O, a)

28 d{

=
:2

a
exp(&:a) |

B(O, a)
8 d{

=
4?:2

a
exp(&:a) |

a

0
dr r2(8)(r) (A.5)

Reporting the intermediate results (A.3), (A.4), and (A.5) in Eq. (A.2)
yields the following integral equation for (8):

8(O)=(1+:a) exp(&:a)(8)(a)+
:2

a
exp(&:a) |

a

0
r2(8)(r) dr (A.6)

Examining the limit a � 0 of Eq. (A.6) yields 8(O)=(8)(0). Taking into
account this result and deriving both sides of Eq. (A.6) with respect to a
gives a simple differential equation for (8)(a):

a
d

da
(8)(a)+(1+:a)(8)(a)=exp(:a)(8)(0) (A.7)

the solution of which may be cast under the form

(8)(a)=
sinh(:a)

:a
8(O) (A.8)
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